Понятия со словосочетанием «комбинаторный анализ»
Связанные понятия
Прикладна́я матема́тика — область математики, рассматривающая применение математических методов, алгоритмов в других областях науки и техники. Примерами такого применения будут: численные методы, математическая физика, линейное программирование, оптимизация и исследование операций, моделирование сплошных сред (Механика сплошных сред), биоматематика и биоинформатика, теория информации, теория игр, теория вероятностей и статистика, финансовая математика и актуарные расчёты, криптография, а следовательно...
Дискре́тная матема́тика — часть математики, изучающая дискретные математические структуры, такие, как графы и утверждения в логике.
Анализ как современный раздел математики — значительная часть математики, исторически выросшая из классического математического анализа, и охватывающая, кроме дифференциального и интегрального исчислений, входящих в классическую часть, такие разделы, как теории функций вещественной и комплексной переменной, теории дифференциальных и интегральных уравнений, вариационное исчисление, гармонический анализ, функциональный анализ, теорию динамических систем и эргодическую теорию, глобальный анализ. Нестандартный...
Многомерный комплексный анализ — раздел математики, изучающий голоморфные функции нескольких комплексных переменных, определенные в многомерном комплексном пространстве, голоморфные отображения и подмногообразия комплексного пространства. Начало систематическому изучению многомерных комплексных функций было положено К. Вейерштрассом и А. Пуанкаре в конце XIX века. А. Пуанкаре распространил на функции нескольких переменных основную теорему Коши и заложил основы многомерной теории вычетов. Методы многомерного...
Гармони́ческий ана́лиз (или фурье́-ана́лиз) — раздел математического анализа, в котором изучаются свойства функций с помощью представления их в виде рядов или интегралов Фурье. Также метод решения задач с помощью представления функций в виде рядов или интегралов Фурье.
Теоретическая информатика — это научная область, предметом изучения которой являются информация и информационные процессы, в которой осуществляется изобретение и создание новых средств работы с информацией. Это подразделение общей информатики и математики, которое сосредотачивается на более абстрактных или математических аспектах вычислительной техники и включает в себя теорию алгоритмов.
Математическая константа или математическая постоянная — величина, значение которой не меняется; в этом она противоположна переменной. В отличие от физических постоянных, математические постоянные определены независимо от каких бы то ни было физических измерений.
Функциональный анализ — раздел анализа, в котором изучаются бесконечномерные топологические векторные пространства и их отображения.
Аналитическая механика — раздел теоретической механики и теоретической физики, в котором формулируются и используются общие принципы (дифференциальные или интегральные) механики, на их основе выводятся основные дифференциальные уравнения движения, исследуются сами уравнения и методы их интегрирования.
Комбинато́рика (комбинаторный анализ) — раздел математики, изучающий дискретные объекты, множества (сочетания, перестановки, размещения и перечисления элементов) и отношения на них (например, частичного порядка). Комбинаторика связана с другими областями математики — алгеброй, геометрией, теорией вероятностей и применяется в различных областях знаний (например, в генетике, информатике, статистической физике).
Теория вычислимости, также известная как теория рекурсивных функций, — это раздел современной математики, лежащий на стыке математической логики, теории алгоритмов и информатики, возникшей в результате изучения понятий вычислимости и невычислимости. Изначально теория была посвящена вычислимым и невычислимым функциям и сравнению различных моделей вычислений. Сейчас поле исследования теории вычислимости расширилось — появляются новые определения понятия вычислимости и идёт слияние с математической...
Метаматематика — раздел математической логики, изучающий основания математики, структуру математических доказательств и математических теорий с помощью формальных методов. Термин «метаматематика» буквально означает «за пределами математики».
Вычислительная теория групп — область науки на стыке математики и информатики, изучающая группы с помощью вычислительных машин. Она связана с проектированием, анализом алгоритмов и структур данных для вычисления различных характеристик (чаще всего — конечных) групп. Область интересна исследованием важных с различных точек зрения групп, данные о которых невозможно получить вычислениями вручную.
Вторичное дифференциа́льное исчисле́ние — раздел современной математики, который расширяет классическое дифференциальное исчисление на многообразиях до пространства решений нелинейных дифференциальных уравнений в частных производных. Заслуга открытия вторичного дифференциального исчисления принадлежит профессору Александру Михайловичу Виноградову.
Квантовая информатика — раздел науки, возникший в конце XX века на стыке квантовой механики, теории алгоритмов и теории информации. В квантовой информатике изучаются общие принципы и законы, управляющие динамикой сложных квантовых систем. Моделью таких систем является квантовый компьютер.
Математи́ческая фи́зика — теория математических моделей физических явлений. Она относится к математическим наукам; критерий истины в ней — математическое доказательство. Однако, в отличие от чисто математических наук, в математической физике исследуются физические задачи на математическом уровне, а результаты представляются в виде теорем, графиков, таблиц и т. д. и получают физическую интерпретацию. При таком широком понимании математической физики к ней следует относить и такие разделы механики...
Ве́кторное исчисле́ние — раздел математики, в котором изучаются свойства операций над векторами. В связи с разнообразием особенностей векторов, зависящих от пространства, в котором они исследуются, векторное исчисление подразделяется на...
Метод обобщений (математика) — метод математического творчества, в котором в процессе формирования математического понятия более широкого объёма отбрасываются все второстепенные данные и акцентируется внимание на основных фактах. Этот метод...
Дискретная дифференциальная геометрия — раздел математики, в котором исследуются дискретные аналоги объектов дифференциальной геометрии: вместо гладких кривых и поверхностей рассматриваются многоугольники, полигональные сетки и симплициальные комплексы.
Теория функций вещественной переменной (или теория функций действительного переменного) — раздел анализа, нацеленный на углублённое изучение двух понятий «классического» математического анализа: производной и интеграла.
Математическая биология — это междисциплинарное направление науки, в котором объектом исследования являются биологические системы разного уровня организации, причём цель исследования тесно увязывается с решением некоторых определённых математических задач, составляющих предмет исследования. Критерием истины в ней является математическое доказательство. Основным математическим аппаратом математической биологии является теория дифференциальных уравнений и математическая статистика.
Математи́ческая ло́гика (теоретическая логика, символическая логика) — раздел математики, изучающий математические обозначения, формальные системы, доказуемость математических суждений, природу математического доказательства в целом, вычислимость и прочие аспекты оснований математики. В более широком смысле рассматривается как математизированная ветвь формальной логики — «логика по предмету, математика по методу», «логика, развиваемая с помощью математических методов».
Теория доказательств — это раздел математической логики, представляющий доказательства в виде формальных математических объектов, осуществляя их анализ с помощью математических методов. Доказательства обычно представляются в виде индуктивно определённых структур данных, таких как списки и деревья, созданных в соответствии с аксиомами и правилами вывода формальных систем. Таким образом, теория доказательств является синтаксической, в отличие от семантической теории моделей. Вместе с теорией моделей...
Общая алгебра (также абстрактная алгебра, высшая алгебра) — раздел математики, изучающий алгебраические системы (также иногда называемые алгебраическими структурами), такие как группы, кольца, поля, модули, решётки, а также отображения между такими структурами.
Интуициони́зм — совокупность философских и математических взглядов, рассматривающих математические суждения с позиций «интуитивной убедительности». Различаются две трактовки интуиционизма: интуитивная убедительность, которая не связана с вопросом существования объектов, и наглядная умственная убедительность.
Интерполяция линейных операторов — направление функционального анализа. рассматривающее банаховы пространства как элементы некоторой категории. Общая теория интерполяции линейных операторов была разработана, начиная с 1958 года, в работах С. Г. Крейна, Ж.-Л. Лионса, Ж. Петре. Имеет многочисленные приложения в теории рядов Фурье, в теории приближений, в теории уравнений в частных производных.
Алгоритмика — раздел информатики, дисциплина, изучающая алгоритмы и их применение к решению задач.
Геометрическая теория групп — область математики, изучающая конечно-порождённые группы с помощью связей между их алгебраическими свойствами и топологическими и геометрическими свойствами пространств, на которых такие группы действуют, либо самих групп, рассматриваемых как геометрические объекты (что обычно делается рассмотрением графа Кэли и соответствующей словарной метрики).
Вычислительная химия — раздел химии, в котором математические методы используются для расчёта молекулярных свойств, моделирования поведения молекул, планирования синтеза, поиска в базах данных и обработки комбинаторных библиотек. Вычислительная химия использует результаты классической и квантовой теоретической химии, реализованные в виде эффективных компьютерных программ, для вычисления свойств и определения структуры молекулярных систем. В квантовой химии компьютерное моделирование заменило не только...
Универсальная алгебраическая геометрия (другое название — алгебраическая геометрия над алгебраическими системами) — направление в математике, изучающее связи между элементами алгебраической системы, выражаемые на языке алгебраических уравнений над алгебраическими системами. Классическая алгебраическая геометрия — это конкретный пример алгебраической геометрии над алгебраическими системами для случая алгебраического поля, в универсальном случае используется инструментарий универсальной алгебры для...
Топологическая комбинаторика — это молодая область математики, возникшая в последней четверти 20-го века, которая занимается следующими вопросами...
Математическая химия — раздел теоретической химии, область исследований, посвящённая новым применениям математики к химическим задачам. Основная область интересов — это математическое моделирование гипотетически возможных физико-химических и химических явлений и процессов, а также их зависимость от свойств атомов и структуры молекул.
Семантические вычисления (англ. Semantic computing) — направление информатики, находящееся на стыке семантического анализа, обработки естественного языка, интеллектуального анализа данных и ряда других направлений.
Матема́тика (др.-греч. μᾰθημᾰτικά < μάθημα «изучение; наука») — наука об отношениях между объектами, о которых ничего не известно, кроме описывающих их некоторых свойств, — именно тех, которые в качестве аксиом положены в основание той или иной математической теории. Исторически сложилась на основе операций подсчёта, измерения и описания формы объектов. Математические объекты создаются путём идеализации свойств реальных или других математических объектов и записи этих свойств на формальном языке...
Геометрическая алгебра — историческое построение алгебры во второй книге «Начал» Евкида, где операции определялись непосредственно для геометрических величин, а теоремы доказывались геометрическими построениями.
Теория колец — раздел общей алгебры, изучающий свойства колец — алгебраических структур со сложением и умножением, схожими по поведению со сложением и умножением чисел. Выделяются два раздела теории колец: изучение коммутативных и некоммутативных колец.
Операторная алгебра — алгебра операторов, действующих на топологическом векторном пространстве. Операторные алгебры активно применяются в теории представлений и в дифференциальной геометрии, в квантовой механике и в квантовой статистической физике, в квантовой теории поля и в современной классической механике.
Алгебры
вершинных операторов впервые были введены Ричардом Борчердсом (англ.) в 1986 году. Имеет важное значение для теории струн, конформной теории поля (англ.) и для смежных областей физики. Аксиомы алгебры вершинных операторов — это формальная алгебраическая интерпретация того, что физики называют хиральной алгеброй.
История комбинаторики освещает развитие комбинаторики — раздела конечной математики, который исследует в основном различные способы выборки заданного числа m элементов из заданного конечного множества: размещения, сочетания, перестановки, а также перечисление и смежные проблемы. Начав с анализа головоломок и азартных игр, комбинаторика оказалась исключительно полезной для решения практических задач почти во всех разделах математики. Кроме того, комбинаторные методы оказались полезными в статистике...
Оптимизация — в математике, информатике и исследовании операций задача нахождения экстремума (минимума или максимума) целевой функции в некоторой области конечномерного векторного пространства, ограниченной набором линейных и/или нелинейных равенств и/или неравенств.
Квантовая информация — основной предмет изучения квантовой информатики — раздела науки на стыке квантовой механики и теории информации, включающей вопросы квантовых вычислений и квантовых алгоритмов, квантовых компьютеров и квантовой телепортации, квантовой криптографии и проблемы декогерентности.
Форма́льные нау́ки — совокупность наук, занимающихся исследованием формальных систем. К формальным наукам относятся: математика, логика, кибернетика, теоретическая информатика, теория информации, теория систем, теория принятия решений, статистика, некоторые аспекты лингвистики.
Символьные вычисления — это преобразования и работа с математическими равенствами и формулами как с последовательностью символов. Они отличаются от численных расчётов, которые оперируют приближёнными численными значениями, стоящими за математическими выражениями. Системы символьных вычислений (их так же называют системами компьютерной алгебры) могут быть использованы для символьного интегрирования и дифференцирования, подстановки одних выражений в другие, упрощения формул и т. д.
Дро́бная дина́мика — область исследований в физике, механике, математике и экономике, изучающая поведение систем и объектов, для описания которых используются методы интегрирования и дифференцирования дробных порядков, методы дробного математического анализа. Дробные производные и интегралы применяются для описания объектов, процессов и систем, характеризующихся свойствами степенной нелокальности, степенной памяти (эредитарности), и фрактальностью.
Гомологическая алгебра — ветвь алгебры, изучающая алгебраические объекты, заимствованные из алгебраической топологии. Первыми гомологические методы в алгебре применили в 40-х годах XX века Фаддеев, Дмитрий Константинович, С. Эйленберг и С. Маклейн при изучении расширений групп.
Формализм — один из подходов к философии математики, пытающийся свести проблему оснований математики к изучению формальных систем. Наряду с логицизмом и интуиционизмом считался в XX веке одним из направлений фундаментализма в философии математики.
Вычислительная топология или алгоритмическая топология — дисциплина, находящаяся на пересечении топологии, вычислительной геометрии и теории вычислительной сложности. Её основными задачами являются создание эффективных алгоритмов для решения топологических проблем и применение топологических методов для решения алгоритмических проблем, возникающих в других областях науки.